« Ripisylve » : différence entre les versions

De atlas Caen
Aller à la navigation Aller à la recherche
Aucun résumé des modifications
Aucun résumé des modifications
Ligne 62 : Ligne 62 :


[[Fichier:Route 1.jpg|vignette|gauche]]
[[Fichier:Route 1.jpg|vignette|gauche]]
[[Fichier:Allée d'arbres 3.jpg|vignette|centré]]
[[Fichier:Allée d'arbres 4.jpg|vignette|droite]]

Version du 15 octobre 2019 à 14:46

Groupe 4 - Projet Ripisylve

Amélie Asturias, Camilo Bayter, Nolwen Le Chevalier, Olga Weil-Flachat




La ripisylve (du latin ripa la rive et silva forêt) décrit l'ensemble des formations boisées qui se trouvent aux abords d'un cours d'eau.


Périmètre : Le Cours Caffarelli, la promenade sous les arbres au bord de l'Orne


Pistes de réflexion :

  • étude des trajectoires piétonnes et cyclistes
  • mise en avant des liens entre le Cours Caffarelli, l'Orne, les villes alentours (Caen, Mondeville, Hérouville, Colombelles, Ouistreham...)
  • examen des mobilités + liens entre Caffarelli et Montalivet
  • convergences/rencontres entre moult trajectoires
  • étude des influences historiques
  • (ré?)aménagement de la promenade du Cours Caffarelli pour les piéton.nes et les cyclistes
  • ...


Mots-clefs :

  • passage
  • arbres
  • Orne
  • ponts
  • route
  • villes
  • trajectoires
  • identité
  • centralité ?


Pistes plastiques + références :

  • parallèleS, ligneS, droiteS
  • textures, couleurs, formes
  • palimpseste
  • ripisylve : forêt + rive
  • reflets, eau
  • Ronda del Sinù - Monteria, Première avenue : multiplicité des trajectoires piéton.nes/cyclistes, courbes sinueuses, points de rencontre
  • Belvédère Ronda del Sinù - Monteria : changement de point vue/échelle, prise de hauteur/élévation, point de rencontres
  • Cycle Snake - Copenhague : sinuosité, couleur orange, surélévation, survol, continuité
  • Cirkelbroen - Copenhague : le pont des cercles, trajectoire couplée à un point de rencontre
  • Anish Kapoor, Bean à Chicago et Sky Mirror à Londres : Reflets fidèles ou non ?, nouvelles perceptions à partir de nouvelles inclinaison/convexité de miroirs